
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
B Computer data

B Most commonly used computer codes
B Collating sequence

\qquad
COSSOUJES COCSS
(Continued from previous side..)
B As most modern coding schemes use 8 bits to represent
a symbol, the term byte is often used to mean a group
of 8 bits
B Commonly used computer codes are BCD, EBCDIC, and
ASCII
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| B. CD |
| :--- | :--- |
| B BCD stands for Binary Coded Decimal |
| B It is one of the early computer codes |
| B It uses 6 bits to represent a symbol |
| B It can represent $64\left(2^{6}\right)$ different characters |
| Ref. Page 36 |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Characters is ECD

Character	BCD Code		Octal Equivalent
	Zone	Digit	
1	00	0001	02
2	00	0010	03
3	00	0011	04
4	00	0100	04
5	00	0101	05
6	00	0110	06
7	00	0111	07
8	00	1000	10
9	00	1001	11
0	00	1010	12

Ref. Page 37 Chapter 4: Computer Codes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EBCDJC	
B EBCDIC stands for Extended Binary Coded Decimal Interchange Code B It uses 8 bits to represent a symbol B It can represent $256\left(2^{8}\right)$ different characters	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Coding of Alphabetic and Nunseris
Characters is EECDJC

Character	EBCDIC Code		Hexadecima
	Digit	Zone	I Equivalent
0	1111	0000	F0
1	1111	0001	F1
2	1111	0010	F2
3	1111	0011	F3
4	1111	0100	F4
5	1111	0101	F5
6	1111	0110	F6
7	1111	0111	F7
8	1111	1000	F8
9	1111	1001	F9

Ref. Page 39
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Zoned Decinaal Nunders

B Zoned decimal numbers are used to represent numeric values (positive, negative, or unsigned) in EBCDIC
B A sign indicator (C for plus, D for minus, and F for unsigned) is used in the zone position of the rightmost digit
B Zones for all other digits remain as F, the zone value for numeric characters in EBCDIC
B In zoned format, there is only one digit per byte

Examples Zoned Decinaj Numbers			
	Numeric Value	EBCDIC	Sign Indicator
	345	F3F4F5	F for unsigned
	+345	F3F4C5	C for positive
	-345	F3F4D5	D for negative

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EBCDJC Codjng Sichense

Example

Using binary notation, write EBCDIC coding for the word BIT. How \qquad many bytes are required for this representation?

Solution

B $=11000010$ in EBCDIC binary notation
$\begin{aligned} & =11001001 \text { in EBCDIC binary notation }\end{aligned}$
$T=11100011$ in EBCDIC binary notation
Hence, EBCDIC coding for the word BIT in binary notation will be
\qquad
$\frac{11000010}{\mathrm{~B}} \quad \frac{11001001}{\mathrm{I}} \frac{11100011}{\mathrm{~T}}$ \qquad
3 bytes will be required for this representation because each letter requires 1 byte (or 8 bits) \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Coding of Numeric ands
Alphabetic Characters in ASCI」

Character	ASCII-7 / ASCII-8		Hexadecimal Equivalent
	0011	Digit	3000
1	0011	0001	31
2	0011	0010	32
3	0011	0011	33
4	0011	0100	34
5	0011	0101	35
6	0011	0110	36
7	0011	0111	37
8	0011	1000	38
9	0011	1001	39

\qquad
\qquad
\qquad
\qquad
(Continued on next slide) \qquad

| Ref. Page 42 | | (Continued on next slide) |
| :--- | :--- | :--- | :--- |

\qquad

Coding of Numeric and Alphabetic Characters in ASCl. \qquad

Character	ASCII-7/ASCII-8		Hexadecimal Equivalent
	Zone	Digit	
A	0100	0001	42
B	0100	0010	43
C	0100	0011	44
D	0100	0100	45
E	0100	0101	46
F	0100	0110	47
G	0100	0111	48
H	0100	1000	49
I	0100	1001	4 A
J	0100	1010	$4 B$
K	0100	1011	$4 C$
L	0100	1100	$4 D$
M	0100	1101	

\qquad
\qquad
\qquad
\qquad
\qquad
Coding of Numeric and Alphaberic Charasters in ASC」

Character	ASCII-7/ASCII-8		Hexadecimal Equivalent
	Zone	Digit	4 E
N	0100	1110	4 F
O	0100	1111	50
P	0101	0000	51
Q	0101	0001	52
R	0101	0010	53
S	0101	0011	54
T	0101	0100	55
U	0101	0101	56
V	0101	0110	57
W	0101	0111	58
X	0101	1000	59
Y	0101	1001	5 A
Z	0101	1010	

Ref. Page 42
Slide 22/30
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Since each character in ASCII-7 requires one byte for its representation and here are 3 characters in the word BOY, 3 bytes will be required for this
representation Slide 23/30

\section*{ASCJJ-8 Coding Schense
 Example
 Write binary coding for the word SKY in ASCII-8. How many bytes are equired for this representation?
 $\mathrm{S}=01010011$ in ASCII- 8 binary notation
 $\mathrm{K}=01001011$ in ASCII-8 binary notation
 $\mathrm{Y}=01011001$ in ASCII - 8 binary notation
 Hence, binary coding for the word SKY in ASCII-8 will be
 $\frac{01010011}{\mathrm{~S}} \frac{01001011}{\mathrm{~K}} \frac{01011001}{\mathrm{Y}}$
 Since each character in ASCII-8 requires one byte for its representation and there are 3 characters in the word SKY, 3 bytes will be required for this representation
 ```

Ref. Page 43
\qquad
\qquad
\qquad

\qquad

\qquad inued):

Capacity to \qquad name
Reserves a part of the code space for private use
Affords simplicity and consistency of ASCII, even
\qquad
Specifies an algorithm for the presentation of text with bi-directional behavior \qquad
Encoding Forms
B UTF-8, UTF-16, UTF-32 \qquad
\qquad
\qquad

Sorting is EBCDJC

Example

Suppose a computer uses EBCDIC as its internal
representation of characters. In which order will this representation of characters. In which order will this computer sort the strings $23, \mathrm{~A} 1,1 \mathrm{~A}$?

Solution:

In EBCDIC, numeric characters are treated to be greater
than alphabetic characters. Hence, in the said computer,
than alphabetic characters. Hence, in the said computer,
numeric characters will be placed after alphabetic
numeric characters will be placed after al
A1 <1 A <23
Therefore, the sorted sequence will be: A1, 1A, 23.

Ref. Page 46
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Therefore, the sorted sequence will be: $1 \mathrm{~A}, 23,2 \mathrm{a}, \mathrm{A} 1, \mathrm{Aa}, \mathrm{a} 2$, and aA

[^0]: BCD Codfng Scherse (Exanfole 1)

 ## Example

 Show the binary digits used to record the word BASE in BCD

 Solution:
 $B=110010$ in BCD binary notation
 $A=110001$ in BCD binary notation
 $S=010010$ in BCD binary notation
 $\mathrm{E}=110101$ in BCD binary notation
 So the binary digits
 $\frac{110010}{\mathrm{~B}} \frac{110001}{\mathrm{~A}} \frac{010010}{\mathrm{~S}} \frac{110101}{\mathrm{E}}$
 will record the word BASE in BCD

